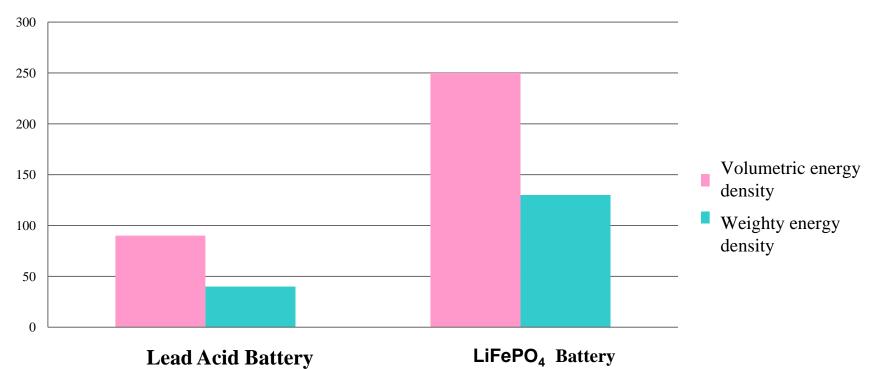
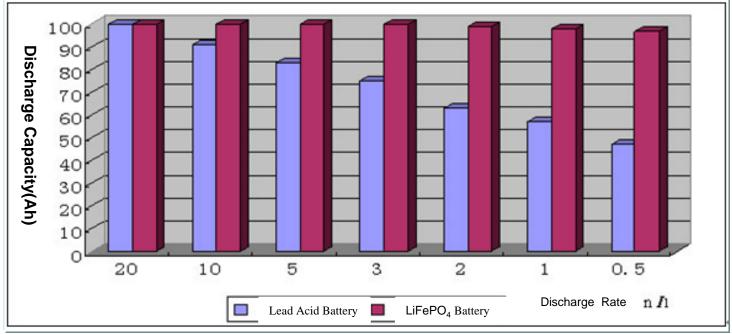


Introduction to the Energy Storage System (ESS) of Apower Electronics Co., Ltd

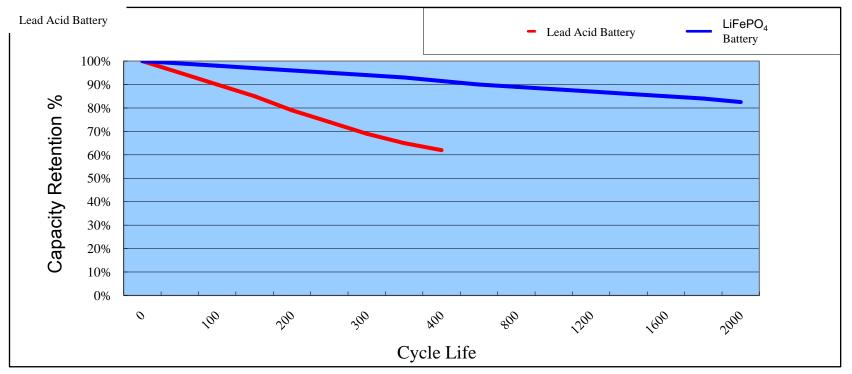


Contents

- Performance Comparison between LiFePO₄ Battery and Lead Acid Battery
- Performance of the Energy Storage System(ESS)
- Product Specification and Parameters
- Functional Diagram
- Product Advantages
- Test Cases & Reports


Comparison of Energy Density between LiFePO₄ Battery and Lead Acid Battery

For a given capacity, the LiFePO₄ Battery boasts a volume and weight which will be 1/3 to 2/3 of that of the Lead Acid Battery.


Comparison of Discharge Rate between LiFePO₄ Battery and Lead Acid Battery

The $LiFePO_4$ Battery reaches a relatively high discharge capacity in a shorter period than the Lead Acid Battery does, which meets the need of high current discharge.

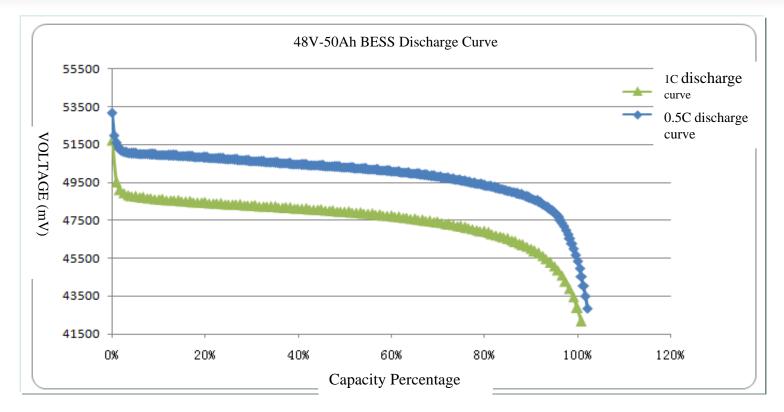
Comparison of Cycle Life between LiFePO₄ Battery and Lead Acid Battery

LiFePO₄ Battery can be recharged over 2000 times with a cycle life as long as 10 years.

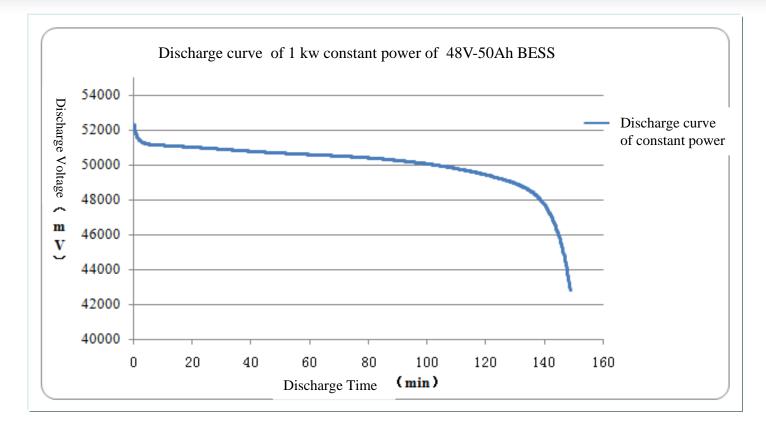
While Lead Acid Battery will lose 40% of its capacity after being recharged 400 times at the RT.

Comparison of Environmental Impact made by LiFePO₄ Battery and Lead Acid Battery

Without any heavy metal, $LiFePO_4$ battery makes no impact on human body and the environment during its manufacture, transportation and being used or wasted.


Lead Acid battery, containing lead and strong acid, will harm human body and pollute the environment during its manufacture and being used or discarded.

The Rate of ESS



The discharge capacity of 25A is 50.8Ah, and the discharge capacity of 50A is 49.6 Ah.

Therefore the ESS remains a relatively high capacity under a high-current discharge.

The Constant Power of ESS

1 kw constant power takes 148.9 minutes to discharge.

Safety of the ESS

Items	LiFePO ₄ Battery		
Overcharge & Overdischarge Test	No Explosion, No Fire		
Nail Test	No Explosion, No Fire		
Short-circuit Test	No Explosion, No Fire		
Thermal Abuse Test	No Explosion, No Fire		
Impact Test	No Explosion, No Fire		
Crush Test	No Explosion, No Fire		
Drop Test	No Explosion, No Leakage and Smoking		

Having been authenticated by YDB032-2009, the Test Standard for Back-up LiFePO₄ Battery Pack for Telecommunications, ESS is 100% safe.

Specification and Parameters

Specification of Low-capacity ESS

Integration, Intelligence and light-weight

Parameters	AEC4840	AEC4850	AEC4860
Cathode Material	LiFePO ₄	LiFePO ₄	LiFePO ₄
Nominal Voltage (V)	48	48	48
Nominal Capacity (Ah)	40	50	60
Nominal Energy (Wh)	1920	2400	2880
Height (mm)	132 (3U)	132 (3U)	132 (3U)
Width (mm)	482	482	482
Working Voltage (V)	43.2~57.6	43.2~57.6	43.2~57.6
Average Charging Voltage(V)	56.0~57.6	56.0~57.6	56.0~57.6
Maximum Discharging Current(A)	40	50	50
Weight (kg)	<35	<40	<45

Specification and Parameters

~p•••m••	<u> </u>		
Parameters	AEC48200	AEC48300	AEC48500
Cathode Material	LiFePO4	LiFePO4	LiFePO4
Nominal Voltage (V)	48	48	48
Nominal Capacity (Ah)	200	300	500
Nominal Energy (kWh)	9.6	14.4	24.0
Height (mm)	12U	18U	30U
Width (mm)	482	482	482
Working Voltage (V)	43.2~57.6	43.2~57.6	43.2~57.6
Average Charging Voltage (V)	56.0~57.6	56.0~57.6	56.0~57.6
Maximum Discharging Current(A)	100	150	250
Weight (kg)	<200	<280	<440

Specification of High-capacity BESS

Specification and Parameters

>Automatic Management

Automatically intermissive charge-discharge management, energy management, safety management, remote control management

Electromagnetic Compatibility (EMC)

Resisting the radiated interference for the battery pack >Integration

The integration of collecting and processing information, controlling the system and communication simplifies the installation and maintenance.

>Equalization Management

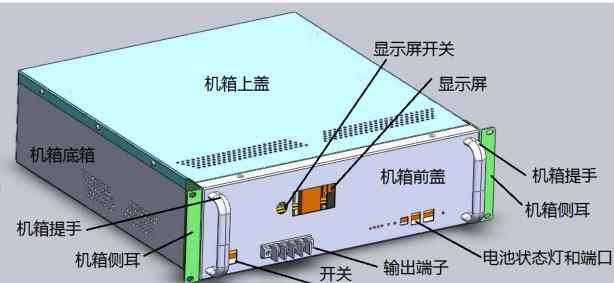
Achieving the equalization management automatically and ensuring the consistence of battery pack, so as to prolong its cycle life.

> Protection against Abnormalities

The whole-process management can avoid abnormalities like over-charge, over-temperature, over-current, shortcircuit and the likes.

	BESS Management functions	
t,	Real-time collecting and updating information of battery	\checkmark
	Warning and protection against high and low temperature	
	Warning and protection against over-voltage charge	\checkmark
	Warning and protection against under-voltage discharge	\checkmark
	Warning and protection against over-current charge	\checkmark
	Warning and protection against over-current discharge	\checkmark
	Warning and protection against reverse connection	
d	Warning and protection against short-circuit	
	Protection of the automatic failure recovery	\checkmark
	Automatic charge-discharge management	\checkmark
	Equalization management	
	Remote monitor and control of the network management	$\overline{\mathbf{A}}$
	Online undate	

Functional Diagram


Main Parts :

1) ON/OFF Button

2) Output terminal

- 3) Display Screen and the Switch
- 4) Indicating Light
- 5) RS 485 & 232 mouthpiece
- 6) Reset Key

7) Earthing Terminal

Product Advantages

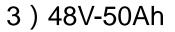
- Strong Adaptability : BESS can be used in the high current and a wide temperature range
- ➢ High Accurateness and Reliability: the adaption of IC at vehicle level can increase the accurateness, stability and reliability of the BMS.
- Strong Impact Resistance and EMC
- > Human-machine Interface: the display screen shows BESS's parameters directly.
- Intelligent Design: it enables the remote control and feedbacks all data to the remote monitor center.
- Block-based Design: Parallel structure can be added to the multi-blocks to prolong BESS life.
- > Energy-conservation and Environmental-Friendliness : No cooling system.

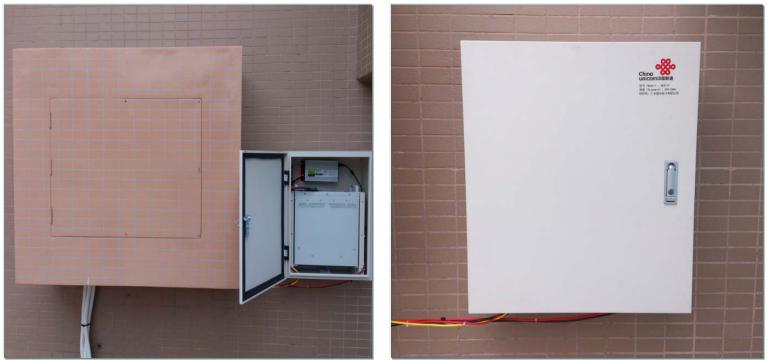
Comparison of Product Advantages among Peer Companies

Manufacturer Functions	AEC	Company A	Company B
Current& Voltage Measuring Accuracy	5mV/200mA	10mV/800mA	20mV/1500mA
SOC estimation Accuracy	2%	4%	5%
Equalization	V	X	V
Inside Telfon Wire	V	X	Х
Vehicle-level IC	V	X	Х
Warning against Sensor Failure and Recovery	V	V	Х
Second Disconnection	V	X	V
calibration	V	V	Х
Intermissive charge-discharge management	V	V	Х
YX/YC/YK/YT	V	Part of them	Part of them
Password	V	V	Х

1)48V-400Ah

48V-400Ah Blocks— the removable energy storage program in Xinjiang

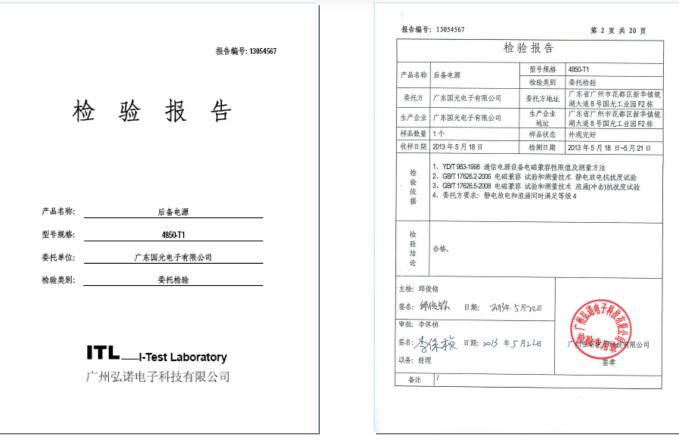



2)48V-1000Ah

48V1000Ah Blocks—the removable energy storage program in Xinjiang

48V-50Ah Blocks—wall-mounted energy storage program of Unicom in Yangjiang City, Guangzhou

4) 48V-150Ah


48V-150Ah Block—outside energy storage program of Telcom in Meizhou City, Guangzhou

LM		报告编号: 12-12-YDC195		信息产业邮电工业产品质量监督检验中心 检验报告			
20110	00911H			12-12-YDC195	_	第1页共5页	
Martine.				HP4850-F1 (48V 50/h)通信用后备 式离子电油组	委托单位 地 址	广州市花帮区装制大道8号1 光工业因F2株	
ilac	MRA CNAS		• 受粮单位	广东国光电子有限公司	产地	广东省	
S.S.	CNAS LOSTI		* 生产单位	广东国光电子有限公司	送样日期	2013年1月15日	
			送样地点	派检中心 (潘仙桥)	送样者	周显茂	
	AT AL	to the	样品数量	1台	原稿号或 生产日期		
	检验	报告	检验类别	委托校验	检验项目	应检 18 項	
			样品初始 状	样品初始状态完好,符合检验要求			
	产品名称 通信用后行	备式锂离子电池组	检验依据	10/12344.1-2011 (通信用磷酸铁锂电	911《通信用磷酸铁锂电池煤第1部分:集成式电池煤》		
		F1 (48V 50Ab) 5电子有限公司 5电子有限公司	校 驗 結	该公司生产的 田4850-F1 (48V 50Mh) 通信用后备式磷酸铁锂电池组 检验。各项性能技术指标结果如下 所检性能及技术指标共 18 项,均达到 YD/T2344.1—2011 (通信用磷 铁锂电池组第 1 部分,集成式电池组》中的要求。 (放验报告专用象) 客双目职,2013年3月.40日			
	信息产业邮电工业产品	质量监督检验中心	备 注	本检验报告不作产品认证型式试验审	批凭证。		

TLL Test Report

EMC Test Report

THANK YOU

